Pages

07 February 2013

334. Compiling nwchem with openmpi and python on Arch linux

Here's the reason why I gave my virtual machine 30 Gb in post 333 -- to be able to evaluate whether I can figure out how to build all the software that I need on Arch.

Behold my surprise when I realised that there's no need for separate -dev packages, as is the case on Debian i.e. the headers are generally installed together with the package (so e.g. python is enough -- you don't need python-dev as well).

While debian is probably the best choice for my nodes (I want stability -- not the latest flashiest stuff), nwchem is a good test case since I've been playing with it for years, and it's not available in the pacman or AUR repos.

Your mileage with openblas will vary depending on your hardware. ACML is an alternative on e.g. FX-8150. ATLAS doesn't seem to work with NWChem when I try it, but I'm not sure what I'm doing wrong. See the original post for examples on how to link to other math libs.

I'm mainly looking at this post: http://verahill.blogspot.com.au/2012/09/briefly-compiling-nwchem-611-with.html


Dependencies:
pacman -S wget base-devel gcc-fortran tcsh openmpi

Openblas:
Download from http://github.com/xianyi/OpenBLAS/tarball/v0.1.1

sudo mkdir /opt/openblas
sudo chown $USER /opt/openblas
tar xvf xianyi-OpenBLAS-v0.1.1-0-g5b7f443.tar.gz
cd xianyi-OpenBLAS-e6e87a2/
make all BINARY=64 CC=/usr/bin/gcc FC=/usr/bin/gfortran USE_THREAD=0 INTERFACE64=1 1> make.log 2>make.err
make PREFIX=/opt/openblas install
cp lib*.*  /opt/openblas/lib

Nwchem:
sudo mkdir /opt/nwchem
sudo chown $USER /opt/nwchem
cd /opt/nwchem
wget http://www.nwchem-sw.org/images/Nwchem-6.1.1-src.2012-06-27.tar.gz
tar xvf Nwchem-6.1.1-src.2012-06-27.tar.gz
cd nwchem-6.1.1-src/

Edit nwchem-6.1.1-src/src/config/makefile.h and edit line 1957 as shown in this post.

Then continue:
export LARGE_FILES=TRUE
export TCGRSH=/usr/bin/ssh
export NWCHEM_TOP=`pwd`
export NWCHEM_TARGET=LINUX64
export NWCHEM_MODULES="all python"
export PYTHONVERSION=2.7
export PYTHONHOME=/usr
export BLASOPT="-L/opt/openblas/lib -lopenblas"
export USE_MPI=y
export USE_MPIF=y
export USE_MPIF4=y
export MPI_LOC=/usr/lib/openmpi
export MPI_INCLUDE=/usr/include
export LIBRARY_PATH=$LIBRARY_PATH:/usr/lib/openmpi:/opt/openblas/lib
export LIBMPI="-L/usr/lib/openmpi -lmpi -lopen-rte -lopen-pal -ldl -lmpi_f77 -lpthread"
cd $NWCHEM_TOP/src
make clean
make nwchem_config
make FC=gfortran 1> make.log 2>make.err
export FC=gfortran
cd ../contrib
./getmem.nwchem

Note that some of the locations are a little bit different from debian.

Edit your ~/.bashrc and add:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/openblas/lib export PATH=$PATH:/opt/nwchem/nwchem-6.1.1-src/bin/LINUX64
You can now test your new binary by running a job, e.g. co.nw:
title "co nmr" geometry c 0 0 0 o 0 0 1.13 end basis * library "6-311+g*" end dft direct grid fine mult 1 xc HFexch 0.05 slater 0.95 becke88 nonlocal 0.72 vwn_5 1 perdew91 0.81 end task dft optimize
Run:

nwchem co.nw

or

mpirun -n 2 nwchem co.nw

No comments:

Post a Comment