21 June 2012

197. Post-mortem of the Moe Quake

The news keep on reporting about a single injured person who was unlucky enough to be standing on a ladder close to the epicentre, but beyond that it seems like no-one else suffered any injuries serious enough to warrant medical attention.

Property damages are a different story though, but the news are having a field day with it, so no point in me repeating what they are saying. My only comment is that the Gippsland/La Trobe Valley area has been hit hard lately, first by floods, storms and now an earthquake -- in addition to recent job losses and uncertainties.

Anyway, science.

www.ga.gov.au has a nice page with technical information about the earthquake:
http://www.ga.gov.au/earthquakes/getQuakeDetails.do?quakeId=3226344

There are several seismograms available from different stations around the country (am I the only chemist who looks at them wanting to apply a FFT?)

Victoria


ACT

Northern QLD

The shape varies with the distance from the earthquake, which I guess tallies with different types of waves travelling at different speeds.

For those of us who are reasonably new to this area, the USGS has a historical earthquake map over Melbourne and the Gippsland/La Trobe valley area.

Here's seismicity in Australia as a whole, and it shows that SE Victoria is no stranger to phenomenon:

http://www.quakes.uq.edu.au/html/quake_info/OZ_QLD_info.html#6

Big earthquakes are a different matter though: http://earthquake.usgs.gov/earthquakes/world/australia/seismicity.php

Only a handful of earthquakes show up on this map, and they are  in WA and NT.

Here's a map with the number of large earthquakes per year (5 and above) -- and Melbourne is by no means the worst hit by the Top 5 cities in Australia
http://earthquake.usgs.gov/earthquakes/world/australia/density.php

Finally, here's a map with the 'earthquake hazard' estimates for different regions of Australia:
http://earthquake.usgs.gov/earthquakes/world/australia/gshap.php

It seems like SE Tassie is the safest, inhabited area. SW WA is the least safe one, but is still nothing compared to PNG and Indonesia and other countries on plate boundaries.

Here's a full paper on seismic hazards in Australia, which contains a nice map with past earthquakes indicated on it: http://www.sciencedirect.com/science/article/pii/S0040195104002185
I'm loading the picture from the publisher's website which is probably the lesser of two evils.

19 June 2012

196. M 5.5 Earthquake near Moe, Victoria. Felt in Melbourne, Australia, 19 June 2012

[20th of July 2012 earthquake here: http://verahill.blogspot.com.au/2012/07/another-earthquake-felt-in-melbourne.html ]

Just (ca 20:50/8.50 pm) experienced my first earthquake (South-eastern suburbs)  -- or rather earth tremor. Rattling doors, a bit of noise, a bit of shaking. Felt like about 10-15 s. More exciting than scary, although I would NOT have wanted to be any closer to the epicentre than we already were (100 km).

Funny it should happen in Australia after five years in California without the slightest tremor.

I like the possum comment below -- was my first thought too! The second one was wind.

If you felt it, you can report it here http://earthquake.usgs.gov/earthquakes/eventpage/usb000ajek#dyfi
There is a point in reporting your experience, since earthquakes aren't just reported in terms of the energy released, but also in terms of damage (or perception).

Update 22:02: http://www.seis.com.au/ is slowly coming back online, but there's no obvious information up yet.

http://www.seis.com.au/ and http://www.ga.gov.au/earthquakes/ went down immediately, and the ga.gov.au site is still down. www.seis.com.au is operating slowly.

Update 21:52. ABC 24 is covering it right now. Quake happened 7 minutes to 9 with the epicentre over by Trafalgar near Moe. No serious injuries. Upgraded to M 5.5.

Update 21:30
The news sites are catching up:
http://www.abc.net.au/news/2012-06-19/magnitude-52-quake-shakes-southern-vic/4080446

http://news.smh.com.au/breaking-news-national/melbourne-hit-by-earthquake-20120619-20m8d.html

http://www.heraldsun.com.au/news/more-news/strong-tremors-rock-victoria/story-fn7x8me2-1226401623358

http://www.theage.com.au/victoria/quake-shakes-melbourne-20120619-20m88.html

Update 21.27: ABC 24 just confirmed it. M 5.2. Moe was the epicentre.

Update 21.10: It's on the USGS website: http://earthquake.usgs.gov/earthquakes/eventpage/usb000ajek#summary




Apparently it was a Magnitude 5.2 centerd somewhere out in Gippsland. Best guess at time is 20:53:29.
The magnitude will likely be adjusted once local data is available.

Postscript:
I posted since the seismology sites were down and there was nothing on the news. Apparently I wasn't the only one who was looking for information:

195. Frequency calcs in NWChem

It's no secret that I'm a computational 'noob'. As such as I'm learning both by reading and by doing.

The doing part consists of checking 1) what the time penalty for different methods is and 2) what the accuracy/differences between different methods are.

Again, these are short calculations for simple molecules. Longer calculations with more exciting features (unpaired electrons, closely spaced MOs, highly negative charges etc.) may well behave completely different.

Today's focus is vibrational calcs.

Test Molecule: CHClF(OH) (chloro-fluoro-methanol)
  1 Title "Freq_test"
  2 
  3 Start  Freq_test
  4 
  5 echo
  6 
  7 charge 0
  8 
  9 geometry noautosym units angstrom
 10  C     0.0416942     -0.501783     0.399137
 11  H     0.0442651     -0.499048     1.48122
 12  O     1.21393     -1.00985     -0.0746688
 13  H     1.25125     -0.957351     -1.06923
 14  F     -1.08480     -1.08768     -0.134571
 15  Cl     -0.120345     1.41214     -0.0717951
 16 end
 17 
 18 ecce_print ecce.out
 19 
 20 basis "ao basis" cartesian print
 21   H library "3-21G"
 22   F library "3-21G"
 23   Cl library "3-21G"
 24   O library "3-21G"
 25   C library "3-21G"
 26 END
 27 
 28 dft
 29   mult 1
 30   odft
 31   mulliken
 32 end
 33 
 34 task dft energy
 35 task dft freq

All geometries were optimised in the gas phase using 3-21G.

0. Some useful statements:
hessian      print "hess_follow"
                 profile
end
1. Basis set (geometry optimised in 3-21g)
(time/enthalpy/entropy/scfe)
3-21G:              81s    24.984 kcal/mol    69.235 cal/mol-K   -671.17956992206 Hartree
6-31G:            105s    21.885 kcal/mol    68.793 cal/mol-K   -674.478768966106
6-31++G**:    399s   21.734 kcal/mol     68.818 cal/mol-K   -674.573524091623
cc-pVDZ:        325s    21.682 kcal/mol    68.819 cal/mol-K   -674.594059146606
aug-cc-pVDZ:  901s   21.605 kcal/mol    68.840 cal/mol-K   -674.623145113155

LANL2DZ(C)/6-+G* 262s  24.923 kcal/mol 68.981 cal/mol-K  -674.539040349134
UHF/aug-cc-pVDZ   373 s 26.196  kcal/mol 68.228 cal/mol-K -672.85402652170

Cation:
3-21G:               ---     21.164 kcal/mol     74.407 cal/mol-K    -670.763278724519 Hartree
6-31G:              142s   21.153 kcal/mol     74.645 cal/mol-K    -674.089132280731
6-31++G**:      637s   21.192 kcal/mol    73.768 cal/mol-K    -674.178146586266
cc-pVDZ:          399s   21.153 kcal/mol    73.736 cal/mol-K    -674.210312017948
aug-cc-pVDZ:   1776s 21.089 kcal/mol     73.774 cal/mol-K   -674.228204222891

LANL2DZ(C)/6-+G* 454s 24.795 kcal/mol  74.293 cal/mol-K -674.140922359750
UHF/aug-cc-pVDZ  741s 26.002 kcal/mol  72.462 cal/mol-K  -672.518095855130

2. Thermochemistry (ΔG of oxidation; gas phase)
3-21G:            -5.3620 kcal/mol +  261.22 kcal/mol =  6.814 V*
6-31G:            -2.4768 kcal/mol +  244.50 kcal/mol =  6.214 
6-31++G**:    -2.0178 kcal/mol+  248.10 kcal/mol =  6.390 
cc-pVDZ:        -1.9950 kcal/mol + 240.80 kcal/mol =  6.075 
aug-cc-pVDZ: -1.9871 kcal/mol + 247.83 kcal/mol =  6.380

LANL2DZ(C)/6-+G* -1.7118 kcal/mol + 249.82 kcal/mol 6.478
UHF/aug-cc-pVDZ -1.4564 kcal/mol +210.80 kcal/mol = 4.797

* vs SHE=4.281 eV

3. Solvation (cosmo/water/scfe)
neutral
3-21g:                66s    22.097 kcal/mol    68.875 cal/mol-K   -671.1936338426 Hartree
6-31g:                82s    22.277 kcal/mol    68.609 cal/mol-K   -674.4934780299
6-31++g**:       277s   21.493 kcal/mol    69.353 cal/mol-K  -674.586704959695
cc-pVDZ:          266s   21.869 kcal/mol    68.808 cal/mol-K  -674.605608009070
aug-cc-pVDZ:    712s  22.116 kcal/mol    69.596 cal/mol-K   -674.635237990779

LANL2DZ(C)/6-31+G* 180s  25.022 kcal/mol   69.073 cal/mol-K -674.552417717602
UHF/aug-cc-pVDZ 412s  24.083 kcal/mol 70.519 cal/mol-K  -672.868085966222

cation (solvation energy)**

3-21G:               --- /26s        21.164 kcal/mol     74.407 cal/mol-K     -670.881469242560 Hartree
6-31G:              142s/51s      21.153 kcal/mol     74.645 cal/mol-K     -674.175491218588
6-31++G**:      637s/111s   21.192 kcal/mol    73.768 cal/mol-K      -674.267298880087
cc-pVDZ:          399s/129s   21.153 kcal/mol    73.736 cal/mol-K      -674.294609415029
aug-cc-pVDZ:   1776s/311s 21.089 kcal/mol     73.774 cal/mol-K     -674.316552324118

LANL2DZ(C)/6-31+G* 454s 24.795 kcal/mol  74.293 cal/mol-K -674.232656980139
UHF/aug-cc-pVDZ   741s 26.002 kcal/mol  72.462 cal/mol-K -672.451040948823
** UHF can't be used with COSMO according to nwchem. Instead we use the cation thermo calcs in the gas phase and use the scfe from a cosmo calc.

Thermochemistry*** (using gas phase freq for both cation and neutral species with scfe w/ cosmo given in parentheses):

3-21G:            -2.5824+195.88=  4.101 V (3.981 V)
6-31G:            -2.9236+199.54=  4.245 V (4.265 V)
6-31++G**:   -1.6173+200.43=  4.341 V (4.324 V)
cc-pVDZ:       -2.1853+195.15=  4.087 V (4.095 V)
aug-cc-pVDZ: -2.2727+199.98= 4.293 V (4.305 V)

LANL2DZ(C)/6-31+G*  -0.41322+200.65= 4.402
UHF/aug-cc-pVDZ 1.3397+261.7 (!)= 7.126
* vs SHE=4.281 eV

*** using freq calc of neutral species with cosmo, vs freq calc of cation in gas phase and energy w/ cosmo

4. Spectra
We'll use octave for this. First, using cat and gawk, I put the x/y coordinates in a file.

gauss= @(x,f,i,sigma)  i.*1./(sigma.*sqrt(2*pi)).*exp(-0.5.*((x-f)./sigma).**2)
subplot(3,2,1); axis([0 4000 0 2])
spc=load('321g.spc');sf=spc(:,1); si=spc(:,2);x=linspace(0,4000,800);spec=cumsum(gauss(x,sf,si,75)); 
title("321g"); plot(x,spec(18,:))
subplot(3,2,2)
spc=load('ccpvdz.spc');sf=spc(:,1); si=spc(:,2);x=linspace(0,4000,800);spec=cumsum(gauss(x,sf,si,75));
title("ccPVDZ");plot(x,spec(18,:))
subplot(3,2,3)
spc=load('631g.spc');sf=spc(:,1); si=spc(:,2);x=linspace(0,4000,800);spec=cumsum(gauss(x,sf,si,75));
title("631g"); plot(x,spec(18,:))
subplot(3,2,4)
spc=load('augccpvdz.spc');sf=spc(:,1); si=spc(:,2);x=linspace(0,4000,800);spec=cumsum(gauss(x,sf,si,75));
title("aug-ccPVDZ");plot(x,spec(18,:))
subplot(3,2,5)
spc=load('631gppdd.spc');sf=spc(:,1); si=spc(:,2);x=linspace(0,4000,800);spec=cumsum(gauss(x,sf,si,75));
title("631++g**"); plot(x,spec(18,:))

From top to bottom: Left: 3-21G, 6-31G, 6-31++G**. Right: cc-pVDZ, aug-cc-pVDZ
5. Conclusions
It may seem weird that as a test case I picked a species I don't have any reference potential for. However, the goal here was to understand how the basis set affects the results, without being distracted by such things as Real Life.

The observed spectra can be divided into two group: 3-21G/6-31G vs 6-31++G**/cc-pVDZ/aug-cc-pVDZ. Polarization (and diffuse functions) seem to play a large role.

In terms of thermochemistry, not surprisingly aug-cc-pVDZ and 6-31++G** give very similar results since they both implement pol/diff functions. The computational cost is, however, significantly higher for aug-cc-pVDZ than 6-31++G**, at least in nwchem.

There is also little difference between doing freq calculations in gas phase vs using cosmo when it comes to the calculated redox potential for the more extensive basis sets.

3-21G gives very varying results, with it giving the highest potential in the gas phase but the second lowest potential with cosmo. cc-pVDZ consistently gives the lowest potential.

UHF/ROHF/HF are fast, but wildly inaccurate. LANL2DZ/6-31+G* looks ok, results-wise, but the thermodynamic corrections are actually much smaller in conjunction with COSMO than the other methods, which is suspicious.

If given the time I may post a more detailed analysis of polarisation vs diffuse functions later.